Course Number: 28609

Course Name: Micro and Nano Flows

Course Type:
Prerequisite:
Level: Graduate
Group: Energy Conversion

Type & Max Unit: 3

Corequisite:

First Presentation:

Last Edition:

Objectives:

Topics:

- 1. Introduction and Governing Equations
 - 1.1- Introduction to Micro and Nano Fluid Flows
 - 1.2- New Flow Regimes in Microsystems
 - 1.3- Micro-nano Flow Characteristics
 - 1.4- The Continuum Hypothesis

2. Multiscale Modeling of Micro-Nano Flows

- 2.1- Molecular Dynamics (MD) Method
- 2.2- Direct Simulation Monte Carlo (DSMC) Method
- 2.3- Lattice-Boltzmann Method (LBM)
- 2.4- Dissipative Particle Dynamics (DPD) Method

3. Governing Equations and Slip Models

- 3.1- The Basic Equations of Fluid Dynamics
- 3.2- Compressible Flow
- 3.3- High-Order Models

4. Shear-Driven Flows

- 4.1- Couette Flow: Slip Flow Regime
- 4.2- Couette Flow: Transition and Free-Molecular Flow Regimes
- 4.3- Cavity Flow

5. Pressure-Driven Flows

- 5.1- Slip Flow Regime
- 5.2- Transition and Free-Molecular Regimes

6. Heat Transfer in Micro-Nano flows

- 6.1- Heat Transfer in Poiseuille microflows
- 6.2- Heat Transfer in Couette microflows
- 6.3- Nanofluid heat transfer

7. Electrokinetic Flows

- 7.1- Introduction to electrodynamics
- 7.2- Governing equations of electrokinetic flows
- 7.3- Electroosmotic flows
- 7.4- Electrophoresis
- 7.5- Dielectrophoresis

8. Surface Tension-Driven Flows

- 8.1- Basic concepts and governing equations
- 8.2- Thermocapillary Pumping
- 8.3- Electrocapillary
- 8.4- Bubble Transport in Capillaries

References:

- Karniadakis, G., Beskok, A. and Aluru, N., 2005, *Microflows and nano flows, Fundamentals and simulation*, Springer, 808p.
- Kandlikar, S.G., Garimella, S., Li, D., Colin, S. And King, M.R., 2005, Heat transfer and fluid flow in minichannels and microchannels, Elsevier, 450 p.
- Tabeling, P., 2005, Introduction to microfluidics, Oxford University Press.
- Rapaport, D.C., 2004, *The art of molecular dynamics simulation*, Cambridge University Press.
- Succi, S., 2001, The Lattice Boltzmann equation for fluid dynamics and beyond, Clarendon Press, 288 p.